(03-04-2015, 06:07 PM)pom19 Wrote: Wow, thanks Lotus, what an important research. <3 POM
Thanks Pom, we're taking proactive steps at BN towards current research, here's an important link regarding PM. In English

it might explain part of a response (growth) issue seen in genetic males. It's that gate-keeper thing (light switch) called HSD (Hydroxysteroid dehydrogenases) it's an enzyme that's positioned in-between cellular steroid hormones pathways, like E1 to E2. But science also defines them as reductase pathways.
Biological Evaluation of Deoxymiroestrol, a Potent Phytoestrogen from Pueraria candollei var. mirifica
Udomsuk L1, Putalun W1, Juengwatanatrakul T2, Jarukamjorn K1*
Introduction: Deoxymiroestrol is a phytoestrogen isolated from tuberous roots of Pueraria candollei var. mirifica (Leguminosae). Since deoxymiroestrol showed strong estrogenic-like activitiy, it is worth to investigate its biological activity on enzymes related drug metabolism, cytochrome P450s (P450), and sex hormone synthesis pathway, as well as its anti-lipid peroxidation in both in vitro in primary mouse hepatocytes and in vivo in mouse liver. Methods: P450 activities were evaluated in both primary mouse hepatocytes and mouse liver. Expression of CYP1A1, CYP1A2, CYP1B1, CYP2B9, AhR, and ARNT mRNAs were quantified by real- time RT-PCR while their activities were assessed by benzyloxyresorufin and methoxyresorufin O-dealkylation, respectively. Enzymes involved in sex-hormone synthesis pathway in male testes were semi-quantified by RT-PCR. Lipid peroxidation was measured in mouse brain. Results:
In primary hepatocytes, expression of AhR, ARNT, and CYP1A1 mRNAs was suppressed whereas that of CYP1B1 was induced by deoxymiroestrol, in which the gene expressions were time- and concentration-dependent patterns compared to those of estradiol. In vivo in mice, deoxymiroestrol enlarged female uterus-weight and -volume as comparable to estradiol. As estradiol did, deoxymiroestrol induced expression of CYP2B9 mRNA whereas those of CYP1A2 were suppressed. Assessment of testicular enzymes involved in sex hormone synthesis pathway showed suppression of 3β-HSD, 17β-HSD1, and CYP17 expressions with those of CYP19 mRNA was slightly decreased by deoxymiroestrol. In addition, the expression of 17β-HSD2 was increased resulting in decreasing estradiol synthesis as that noted by estradiol. In addition, deoxymiroestrol possessed anti-lipid peroxidative activity in mouse brain. Conclusion: These observations suggested deoxymiroestrol as a potential alternative medicine for estradiol according to its distinctive abilities on regulation of related hepatic P450 enzymes and sex hormone-synthesis responsive enzymes, with its beneficent anti-oxidative potential.
http://pharm.kku.ac.th/isan-journal/journal/volumn8-no1/4annual/037-KKU-KKU_Pages_249.pdf
Ok, I think we're seeing a problem here with the down regulation of Hydroxysteroid dehydrogenases (HSDs). In paticlaur 3β-HSD, 17β-HSD1, and 17β-HSD1 catalyzes the activation of estrone (E1) to the most potent estrogen estradiol (E2), predominantly considered as an ezyme of estradiol biosynthesis. Which deoxymiroestrol seems to suppress the action, in other words in males it may interrupt the synthesis of E1 (estrone) to E2 (estradiol).
Which this theory or hypothesis lines up with PM an E1 mediator. Which Dr. Gordon commented on here, albeit from E3 to E1:
Quote:Dr Gordon: First, I have to give credit for this information to Dr. Youssef Mirhom, professor emeritus, pharmacognosist and chief scientific officer at Bio-Botanica. Estriol itself is not a hormone secreted by the ovary, but a deactivation product of estrone and estradiol in the human liver by 16-alpha-hydroxylation. Miroestrol is a phytoestrogen (a plant estrogen), and has the same chemical properties, as well as physiological properties as estriol; however, it has a weaker estrogenic effect. And Professor Sayan Sawatsri M.D., gets the credit for the following valuable bit of information—miroestrol has about 3,000 times the estrogenic activity of soy isoflavones. initially said.
Assessment of testicular enzymes involved in sex hormone synthesis pathway showed suppression of 3β-HSD, 17β-HSD1, and CYP17 expressions with those of CYP19 mRNA was slightly decreased by deoxymiroestrol. In addition, the expression of 17β-HSD2 was increased resulting in decreasing estradiol synthesis as that noted by estradiol
17β-HSD type1: 17β-HSD1 catalyzes the activation of estrone (E1) to the most potent estrogen estradiol (E2), predominantly considered as an ezyme of estradiol biosynthesis.
_________________
Hydrohysteroid Dehydrogenases –
Biological Role and Clinical Importance – Review
http://cdn.intechopen.com/pdfs-wm/40961.pdf