I now understand how highly organized molecules function inside the mitochondrial matrix, for instance: ATP (which stands for
Adenosine Triphosphate) is the Energy Currency for Cells, but before I get into the science (which blows my mind) I must admit ignorance in my early NBE programs.....yup!, I didn't know any better back then
but here I am now better prepared/informed and ready take on the science of NBE/hrt.
Btw, only using 600 mg of fenugreek (with 50% saponins) works just fine:
Fenugreek increases estradiol
http://www.breastnexus.com/showthread.php?tid=26172
Part of the reason (which I know believe) what makes fenugreek useful for NBE is how it works in stomach acid...the saponins (emulsifiers) in FG is mechanism for boosting estradiol in stomach acid, I'll follow up on that later though.
How ATP Transfers Energy
Energy is usually liberated from the ATP molecule to do work in the cell by a reaction that removes one of the phosphate-oxygen groups, leaving adenosine diphosphate (ADP). When the ATP converts to ADP, the ATP is said to be spent. Then the ADP is usually immediately recycled in the mitochondria where it is recharged and comes out again as ATP. In the words of Trefil (1992, p. 93) “hooking and unhooking that last phosphate [on ATP] is what keeps the whole world operating.”
The enormous amount of activity that occurs inside each of the approximately one hundred trillion human cells is shown by the fact that at any instant each cell contains about one billion ATP molecules. This amount is sufficient for that cell’s needs for only a few minutes and must be rapidly recycled. Given a hundred trillion cells in the average male, about 10 to the 23rd power * or one sextillion ATP molecules normally exist in the body. For each ATP “the terminal phosphate is added and removed 3 times each minute” (Kornberg, 1989, p. 65).
The total human body content of ATP is only about 50 grams, which must be constantly recycled every day. The ultimate source of energy for constructing ATP is food; ATP is simply the carrier and regulation-storage unit of energy. The average daily intake of 2,500 food calories translates into a turnover of a whopping 180 kg (400 lbs) of ATP (Kornberg, 1989, p. 65).
The Structure of ATP
ATP contains the purine base adenine and the sugar ribose which together form the nucleoside adenosine. The basic building blocks used to construct ATP are carbon, hydrogen, nitrogen, oxygen, and phosphorus which are assembled in a complex that contains the number of subatomic parts equivalent to over 500 hydrogen atoms. One phosphate ester bond and two phosphate anhydride bonds hold the three phosphates (PO4) and the ribose together. The construction also contains a b-N glycoside bond holding the ribose and the adenine together.
https://www.trueorigin.org/atp.php
____________________________________
I believe I can now offer an explanation why bellies get bigger (for some) when using NBE/hrt.
Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity
Kraunsøe R1, Boushel R, Hansen CN, Schjerling P, Qvortrup K, Støckel M, Mikines KJ, Dela F.
Author information
Erratum in
* J Physiol. 2010 Oct 15; 588(Pt 20):4055.
Abstract
Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples were permeabilized and respirometric measurements were performed in duplicate at 37 degrees C. Substrates (glutamate (G) + malate (M) + octanoyl carnitine (O) + succinate (S)) were added sequentially to provide electrons to complex I + II. ADP ((D)) for state 3 respiration was added after GM. Uncoupled respiration was measured after addition of FCCP.
Visceral fat contained more mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller. Robust, stable oxygen fluxes were found in both tissues, and coupled state 3 (GMOS(D)) and uncoupled respiration were significantly (P < 0.05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P < 0.05) lower mitochondrial respiration. Substrate control ratios were higher and uncoupling control ratio lower (P < 0.05) in visceral compared with subcutaneous adipose tissue.
We conclude that visceral fat is bioenergetically more active and more sensitive to mitochondrial substrate supply than subcutaneous fat. Oxidative phosphorylation has a higher relative activity in visceral compared with subcutaneous adipose tissue.
So you see----visceral fat contains more mitochondrial matrix to make more fat from, and this can be completed as seen in billions of signals within minutes inside the mitochondrial matrix. So either burn the excess (energy) so it doesn't go to fat storage. Or....add a supplement that break down fats.
____________________________
Why does breast growth fail/falter or disappear?....the reason (imo) is that it's lacking a vascular network, and without a current blood supply to new tissue (breast) disappears, and while this is a new explanation, it's not new in terms of science. Recently scientists have created a vascular network using a spinach leaf.....(simple amazing) see here:
https://www.sciencedaily.com/releases/20...152753.htm
And what this tells me is that new breast tissue needs to be of muscle....then a vascular network can be added (to muscle), the technology gets a little complicated but think in terms of when using breast pumps, like when breast tissue is expanded using static pressure it's pumping/pulling fats to expand fat cells, where pumping falters is not having a blood supply to keep the oxygen a float (so to speak), my answer would be to build a muscular structure for breast tissue, I know this works because I've been building muscle from my beginning days of NBE, it's a combination of a grab n' pull method to build strength in all the quadrants of the breast. And this is where ATP will help us build a cellular network (for example) for the energy needed to build new muscle, so go back and re-read up on ATP, pay note to this paragraph:
" Adenylate kinase " requires an atom of magnesium—and this is one of the reasons why sufficient dietary magnesium is important.
Here's the home run (scratch that, it's the grand slam) to all this:
Localized expression of aromatase in human vascular tissues.
Harada N1, Sasano H, Murakami H, Ohkuma T, Nagura H, Takagi Y.
Author information
Abstract
The atheroprotective effects of estrogen are well established and the presence of an estrogen receptor in vascular tissues has recently been reported. Therefore, we investigated the localization of the estrogen-producing enzyme aromatase in vascular tissues to assess the possible contribution of endocrine, paracrine, and autocrine modes of action.
Aromatase was found in human vascular smooth muscle cells (SMCs) but not in endothelial cells on in situ hybridization. These observations were further supported by quantitative analysis of aromatase mRNA and the activity in 15 human vascular specimens. Only trace levels of expression were detected in the 3 infants examined, whereas 0.0088 to 0.0806 amol/ microg RNA of aromatase mRNA and 12.9 to 122.3 fmol. h-1. mg-1 protein of the activity were detected in 12 of the adult individuals. The switching of tissue-specific exon 1 of the human aromatase gene was also observed in some cases. Aromatase was found to be expressed only in cultured SMCs and not in cultured endothelial cells of human aorta and pulmonary artery and to be regulated through dexamethasone and the signaling pathways of protein kinase A and C.
Study results revealed the localized expression of aromatase in vascular SMCs, which indicated a possible direct action of locally produced estrogen in an autocrine or paracrine manner, with possible cross talk between smooth muscle and endothelial cells.
PMID: 10364566